Course catalogue
Create your own master’s programme by choosing between the different specializations of our partner universities.
Academic Programme
Implemented from September 2025
Bionanotechnology (3 ECTS)
All courses during this semester
- Experimental methods on innovative research infrastructures - 5 ECTS
- Digital Micro-certification "The challenges of sustainable chemistry" - 10h
- Transferable skills : French language & interculturality (3 ECTS)
- Quantum mechanics towars quantum computing (5 ECTS)
- Winter school in Data Science (2 ECTS)
- Organic / Inorganic chemistry towards sustainability (5 ECTS)
- Kinetics and Electrochemistry (5 ECTS)
- Introduction to biophysics and microscopies for life science (5 ECTS)
All courses during this semester
- Luminescence spectroscopy of Lanthanides (3 ECTS)
- Summer School in Entrepreneurship (5 ECTS)
- Transferable skills: Polish course (3 ECTS)
- The molecules of life: from structure to chemical function (5 ECTS)
- Thermodynamics and soft matter (3 ECTS)
- Introduction to solid state (5 ECTS)
- Tech-infused perspectives on photochemical reaction dynamics (6 ECTS)
- Transferable skills: Portuguese course (3 ECTS)
- Summer School in Entrepreneurship (5 ECTS)
- Solid State Physics (5 ECTS)
- Molecular Energetics (3 ECTS)
- Laboratory of Materials and Surface Analysis (5 ECTS)
- Interfacial Electrochemistry (3 ECTS)
- Interfaces, Colloids and Self-Assembly (6 ECTS)
All courses during this semester
- 1-year research project - master thesis (equivalent 45 ECTS)
- Progress assessment of the research project (equivalent 6 ECTS)
- Weekly seminars (equivalent 4 ECTS)
- Special Topics in Chemistry (equivalent 5 ECTS)
- French language courses (3 ECTS)
- Nanosciences (6 ECTS)
- Medical applications of nanomaterials and radiations (6 ECTS)
- Top management, corporate law, and project writing for technology transfer and decision making (4 ECTS)
- Tracking ultrafast radiation-induced reactivity (3 ECTS)
- Applications for renewable energy and storage: solar fuels, batteries and hydrogen (6 ECTS) (6 ECTS)
- Scientific Writing and career objectives (2 ECTS)
- Surface Science and Nanostructuring at Surfaces (6 ECTS)
- Polymers for electronics and energy harvesting (5 ECTS)
- Electrochemical systems for fuel and electrolysis cells and batteries (6 ECTS)
- Project-based laboratory on device building (3 ECTS)
- Italian Courses (3 ECTS)
- Chemistry and Technology of Catalysis (5 ECTS)
Content
- Bionanotechnology: historical perspective; fundamental concepts; impact in the society.
- Interaction of nanomaterials with biological molecules and cells: most common nanomaterials in bionanotechnology and their properties; key factors for the interaction between nanomaterials and cells; chemical modification of nanomaterials for interaction with biological systems; methods to study the interaction between nanomaterials and biomolecules or cells.
- Bionanotechnology: Biosensors; drug and gene delivery; Nanotheragnostics; Nanotoxicology; Biosurfaces analysis by surface probe microscopy (SPM); Nanomachines; Molecular printing of proteins.
Aims
The main objective of the course is to provide advanced training in the area of bionanotechnology, with a strong focus on the relevance of the interdisciplinary role of chemistry and biology. By the end of the course, the students should be able to recognize the role of bionanotechnology as an interdisciplinary tool and to understand how to use these new tools in to solve problems in biological systems. The course starts with a discussion about the importance of nanotechnology and how nanotechnology may contribute to the development of new technological solutions (theme 1). Then, some relevant properties of nanomaterials are addressed (theme 2), with special focus in applications in bionanotechnology. Bionanotechnology is then used as a scaffold to consolidate and develop the previous topics in specific questions that will be addressed as case studies (theme 3). In this part, the students will develop their critical thinking and analytical skills by applying the previously addressed principles.
Recommended Books
- de la Fuente J. M.; V. Grazu V., Eds. (2012), Nanobiotechnology: Inorganic nanoparticles; Frontiers of Nanoscience, Vol. 4 vs Organic Nanoparticles, Elsevier.
- Jarvis, C., Ed. (2018) Nanobiotechnology: an Introduction; Larssen & Keller.
- Goswami, A.; Choudhury, S. R., Eds (2017) Nanobiotechnology: Basic and Applied Aspects; Union Bridge.
- Niemeyer, C.M.; Mirkin, C.A., Eds. (2004). Nanobiotechnology: Concepts, Applications and Perspectives; Weinheim, Alemanha: Wiley-VCH.
- Mirkin, C.A., Niemeyer, C.M., Eds. (2007). Nanobiotechnology II: More Concepts and Applications; Weinheim, Alemanha: Wiley-VCH.
- Goodsell, D.S. (2012) Bionanotechnology: Lessons from Nature, Hoboken, NJ, USA: Wiley-Liss.
Teaching Staff
Eulália Pereira (responsible)
Hours
21 h (lectures + theoretical-practical classes)
Grading System
An integrated approach is followed, including theoretical classes about the main concepts, case studies relevant to the syllabus, followed by a component of active learning, in group or individually, that allows that the students explore and apply the concepts learned. These components are:
- Oral presentation of scientific articles about selected subjects;
- Debate about the ethical and societal impact of bionanotechnology;
- Writing an abstract for a scientific paper;
- Oral presentation of an innovative project using bionanotechnology.
The evaluation is based in these components, with the following weights: 1) 30%; 2) 20%; 3) 20%; 4) 30%.