Course catalogue
Create your own master’s programme by choosing between the different specializations of our partner universities.
Master SERP+ Programme - cohort 2020-2025
Electrochemical systems for energy conversion and storage (6 ECTS)
All courses during this semester
All courses during this semester
- Transferable skills: Polish course, Summer School in Entrepreneurship (6 ECTS)
- The molecules of life: from structure to chemical function (3 ECTS)
- Selected in silico and in vitro methods in thermodynamics and soft matter (6 ECTS)
- Organic chemistry (3 ECTS)
- Introduction to solid state (6 ECTS)
- Dynamics of photochemical reactions in chemistry, biology and medicine (6 ECTS)
- Transferable skills: Portuguese course, Summer School in Entrepreneurship (6 ECTS)
- Solid State Physics (6 ECTS)
- Molecular Energetics (3 ECTS)
- Laboratory of Materials and Surface Analysis (6 ECTS)
- Interfacial Electrochemistry (3 ECTS)
- Interfaces, Colloids and Self-Assembly (6 ECTS)
- Transferable skills: Summer School in Entrepreneurship (3 ECTS)
- Organic Photochemistry (3 ECTS)
- Italian Courses (3 ECTS)
- Introduction to Solid State (6 ECTS)
- Inorganic Functional Materials (3 ECTS)
- Electrochemical systems for energy conversion and storage (6 ECTS)
- Chemistry and Technology of Catalysis and Laboratory (6 ECTS)
All courses during this semester
- Nanosciences (6 ECTS)
- Nanoparticles and Advanced radiation therapies (6 ECTS)
- Fundamentals in data science and machine learning (3 ECTS)
- Femtochemistry (3 ECTS)
- Chemistry for renewable energy: from advanced research to industrial applications (6 ECTS)
- Transferable skills: Scientific writing, Polish courses (6 ECTS)
- Lanthanide luminescence: Application in chemistry and biology (6 ECTS)
- Introduction to Data Sciences (3 ECTS)
- Environmental photochemistry (3 ECTS)
- Computational and quantum photochemistry (6 ECTS)
- Applied photochemistry and luminescence spectroscopy (6 ECTS)
- Scientific Writing and Career Objectives (3 ECTS)
- Portuguese course (3 ECTS)
- Nanotechnologies, Micro and Nano-fabrication (6 ECTS)
- Materials Properties and Applications (6 ECTS)
- Electrochemical Technology (6 ECTS)
- Data Science Basics (3 ECTS)
- Bionanotechnology (3 ECTS)
- Transferable skills: Scientific Writing Industrial Seminars (3 ECTS)
- Surface Science and Nanostructuring at Surfaces (6 ECTS)
- Polymers for electronics and energy harvesting (6 ECTS)
- Laboratory on device building (3 ECTS)
- Italian Courses (3 ECTS)
- Data Science and Applications to Chemistry (3 ECTS)
- Composite materials for biomedical applications (6 ECTS)
Content
The course gives an overview of electrochemical conversion and storage devices, dealing with advanced materials and technologies for rechargeable batteries, fuel cells, electrolysers, supercapacitors, dye-sensitised cells and electrolysis cells. Students are besides introduced to equivalent circuits analysis and electrochemical characterization techniques, with particular focus on electrochemical impedance spectroscopy.
Within the course there are 4-5 assignments, for which the group collaboration is encouraged.
Aims
The purpose of the course is to provide the concepts of electrochemistry and the aspects of materials science constituting the basis of the most promising electrochemical systems for energy. At the end of the course the student will have acquired the theoretical knowledge on the structure and operating principle of each device, whether it be for conversion (spontaneous current flows - galvanic cells, photoelectrochemical cells - and forced - electrolysers) or for storage (secondary batteries, supercapacitors).
Pre-requiste
Etymology of electrochemistry. Basics of electrochemistry thermodynamics and kinetics. Basics of electrical circuits.
Recommended Books
- J. Newman, K. E. Thomas-Alyea, “Electrochemical Systems”, John Wiley & Sons (Third Edition, 2004)
- “High temperature Solid Oxide Fuel Cells. Fundamentals, design and applications”, Edited by: S.C. Singhal and K. Kendall, Elsevier Ltd., Oxford, UK (2003)
- J. Larminie and A. Dicks, “Fuel cell systems explained”, John Wiley and Sons, Ltd., England (Second Edition, 2003)
- R. A. Huggins, “Energy storage - Fundamentals, Materials and Applications”, Springer (Second Edition, 2016).
Research articles selected by the teacher.
Teaching Staff
Paola Carpanese
Antonio Barbucci
Hours
Lectures: 36 hours
Practical course: 12 hours
Study hours for the student: 102h
Grading System
Periodic problem assignments: 40 %
Final exam: 60