Course catalogue
Create your own master’s programme by choosing between the different specializations of our partner universities.
Master SERP+ Programme - cohort 2020-2025
Chemistry and Technology of Catalysis and Laboratory (6 ECTS)
All courses during this semester
All courses during this semester
- Transferable skills: Polish course, Summer School in Entrepreneurship (6 ECTS)
- The molecules of life: from structure to chemical function (3 ECTS)
- Selected in silico and in vitro methods in thermodynamics and soft matter (6 ECTS)
- Organic chemistry (3 ECTS)
- Introduction to solid state (6 ECTS)
- Dynamics of photochemical reactions in chemistry, biology and medicine (6 ECTS)
- Transferable skills: Portuguese course, Summer School in Entrepreneurship (6 ECTS)
- Solid State Physics (6 ECTS)
- Molecular Energetics (3 ECTS)
- Laboratory of Materials and Surface Analysis (6 ECTS)
- Interfacial Electrochemistry (3 ECTS)
- Interfaces, Colloids and Self-Assembly (6 ECTS)
- Transferable skills: Summer School in Entrepreneurship (3 ECTS)
- Organic Photochemistry (3 ECTS)
- Italian Courses (3 ECTS)
- Introduction to Solid State (6 ECTS)
- Inorganic Functional Materials (3 ECTS)
- Electrochemical systems for energy conversion and storage (6 ECTS)
- Chemistry and Technology of Catalysis and Laboratory (6 ECTS)
All courses during this semester
- Transferable skills: Scientific writing, French courses - 5ECTS
- Nanosciences (6 ECTS)
- Nanoparticles and Advanced radiation therapies (6 ECTS)
- Fundamentals in data science and machine learning (3 ECTS)
- Femtochemistry (3 ECTS)
- Chemistry for renewable energy: from advanced research to industrial applications (6 ECTS)
- Transferable skills: Scientific writing, Polish courses (6 ECTS)
- Lanthanide luminescence: Application in chemistry and biology (6 ECTS)
- Introduction to Data Sciences (3 ECTS)
- Environmental photochemistry (3 ECTS)
- Computational and quantum photochemistry (6 ECTS)
- Applied photochemistry and luminescence spectroscopy (6 ECTS)
- Scientific Writing and Career Objectives (3 ECTS)
- Portuguese course (3 ECTS)
- Nanotechnologies, Micro and Nano-fabrication (6 ECTS)
- Materials Properties and Applications (6 ECTS)
- Electrochemical Technology (6 ECTS)
- Data Science Basics (3 ECTS)
- Bionanotechnology (3 ECTS)
- Transferable skills: Scientific Writing Industrial Seminars (3 ECTS)
- Surface Science and Nanostructuring at Surfaces (6 ECTS)
- Polymers for electronics and energy harvesting (6 ECTS)
- Laboratory on device building (3 ECTS)
- Italian Courses (3 ECTS)
- Data Science and Applications to Chemistry (3 ECTS)
- Composite materials for biomedical applications (6 ECTS)
Content
The course will provide students with the basics of preparation, characterization and application of heterogeneous catalysts to industrial and eco-sustainable processes. Innovative team and problem based learning approaches will be used for both classroom and laboratory sessions. The students will be organized in teams that will deal with the development of real catalysts using a problem based learning approach. The course will be structured by defining some main learning milestones, and general assessments will be periodically carried out by using an interactive presentation tool with a real-time feedback (e.g. Mentimeter).
Theoretical part: frontal classes
- Introduction to heterogeneous catalysis
Fundamentals of catalysis. Catalytic site and fundamentals on reaction mechanism. Survey of industrial heterogeneous catalysts. Activity (TON, TOF), selectivity and stability. Examples of catalysis applied to the development of eco-sustainable and green processes or to pollution control. Catalyst requirements.
- Catalysts preparation
Support and properties. Synthesis of supports and bulk catalysts. Precipitation, sol-gel, hydrothermal synthesis, stabilization, shaping. Zeolite synthesis. Raney Catalysts. Preparation of supported catalysts, methods of deposition and support selection: impregnation with and without interaction (incipient wetness, homogeneous precipitation, ion exchange, adsorption). Scale-up of catalysts preparation.
- Catalyst characterization
Morphology and physical characteristics, bulk and surface characterizations, technological properties. Low temperature vapor adsorption and physisorption, porometry and fluid permeation, microscopy, spectroscopic techniques, programmed temperature techniques. Assessment of metal dispersion (e.g. TEM and chemisorption).
- Industrial and laboratory reactors.
Experimental procedures to assess the catalytic activity and laboratory reactors. Reaction regimes and mass transport regimes in heterogeneous catalysis: criteria and experimental methods. Experimental planning of kinetic measurements.
Laboratory trainings
- Preparation of supported and bulk catalysts by dry and wet methods. Porosity and catalyst loading determination.
- Catalyst characterization by electron microscopy (SEM, TEM), physisorption, permeability and infrared spectroscopy.
- Testing of a catalyst in a gas-solid catalytic reaction or a gas-liquid-solid catalytic reaction.
Aims
The general aim of the course is to achieve an understanding of the basic catalysis and applied aspects of heterogeneous catalysis. At the end of the course students should be able to prepare and characterize, and plan how to test the catalyst. The innovative learning approach aims to improve the capacity of experimental observation, creativity, the ability to solve problems in a team working environment, to organize the experimental work in a report.
Pre-requiste
General Chemistry, Physical Chemistry (equilibrium thermodynamics), Fundamentals of kinetics
Recommended Books
- “Engineering Catalysis”, D. Yu. Murzin, Berlin / Boston, De Gruyter, 2013
- “The Catalytic Process from Laboratory to the Industrial Plant”, D. Sanfilippo (ed.), Milano, Maraschi, 1994. This book is available to students in the form of an article for each chapter through ScienceDirect.
- “Principles and Practice of Heterogeneous Catalysis”, J.M.Thomas, W.J. Thomas, Wiley-VCH Verlag GmbH, 1996
Teaching Staff
Prof. Antonio Comite (Course Coordinator)
Hours
Lectures: 32 h
Lab works: 26 h
Grading System
Final oral exam: 60%
Laboratory reports: 40%